- Griffith, E. H., Hunt, G. W. & Amma, E. L. (1976). J. Chem. Soc. Chem. Commun. pp. 432-433.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Okaya, Y. & Knobler, C. (1964). Acta Cryst. 17, 928-930.
- Sheldrick, G. M. (1990). SHELXTL/PC. Structure Determination Software Programs. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS. Diffractometer Control Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spofford, W. A. III & Amma, E. L. (1968). J. Chem. Soc. Chem. Commun. pp. 405–407.

Acta Cryst. (1998). C54, 1752-1753

trans-Carbonyl(pentafluorophenyl-*C*)bis-[(pentafluorophenyl)diphenylphosphine-*P*]iridium(I)

JOHN FAWCETT, ERIC G. HOPE AND LEE A. PECK

Department of Chemistry, University of Leicester, Leicester LE1 7RH, England. E-mail: jxf@leicester.ac.uk

(Received 26 March 1998; accepted 8 June 1998)

Abstract

In *trans*-[Ir(C₆F₅){P(C₆F₅)(C₆H₅)₂}₂(CO)], the Ir—P and Ir—C distances are comparable to those of the triphenylphosphine analogue. F...F interactions appear to dominate the configuration, resulting in virtually eclipsed C₆F₅(Ir) and C₆F₅(P) rings.

Comment

It has been shown that a σ -pentafluorophenyl ligand can markedly influence the tendency of low-valent metal complexes to undergo oxidative addition reactions (Bennett, Bruce & Goodfellow, 1973; Bennett, Bruce & Gardner, 1973; Rausch & Moser 1974). We have been investigating crystallographically the steric and electronic effects of F atoms in arylphosphine and -phosphite ligands (Atherton *et al.*, 1995, 1997), and during this work obtained crystals of the title compound, (1).

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved

The structural features of this complex can be directly compared to those of trans-carbonyl(pentafluorophenyl)bis(triphenylphosphine)iridium(I), (2) (Clearfield et al., 1975). The Ir coordination environments are very similar: Ir-P distances of 2.305(1) and 2.304(1) Å in (1), cf. 2.326(4) and 2.305(5) Å in (2), Ir— $C_{carbonyl}$ 1.863 (5) Å in (1), cf. 1.891 (17) Å in (2), and Ir-C_{aryl} 2.092 (4) Å in (1), cf. 2.090 (16) Å in (2). The Ir— C_{aryl} distances suggest little π overlap between the ligand and the metal centres, indicating that the reduced reactivity of these pentafluorophenyl derivatives towards oxidative addition reactions is predominately a steric effect. This is in marked contrast to the results of our work on fluorophenylimido molybdenum dimers (Fawcett et al., 1994; Bhattacharyya et al., 1997), which showed that the introduction of the $-N(C_6F_5)$ ligand had a significant electronic influence on the metal centres.

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 30% displacement ellipsoids. H atoms have been omitted for clarity.

In the structure determination of (2), the atoms in the pentafluorophenyl ring were seen to have large displacement parameters, affording unusual C-C and C-F bond lengths. In (1), the metal-bound pentafluorophenyl ring is well defined and the average C-C [1.378 (17) Å] and C—F [1.348 (6) Å] distances are virtually identical to the corresponding distances in the P-bound pentafluorophenyl rings [1.378 (15) and 1.340 (7) Å, respectively]. In contrast to the staggered arrangement of the phosphine aryl groups in (2) and in most transbis(phosphine) metal complexes, in (1), the phosphine aryl groups are eclipsed and both of the $C_6F_5(P)$ rings and the $C_6F_5(Ir)$ ring line up, presumably as a result of interactions between the F atoms, resulting in very small C41-P1-Ir1-C1 and C11-P2-Ir1-C1 torsion angles $[3.7(2) \text{ and } 7.1(2)^\circ$, respectively]. There is slight bending of the P1-Ir1-P2 axis [175.4(1)°]

1752

away from the σ -aryl ligand, to relieve some steric crowding. As a result of the eclipsed arrangement of the rings, the molecule exhibits an approximate and non-crystallographic twofold axis through C1, Ir1, C7 and O1. Additionally, in an extended view of the crystal across several unit cells, the protio-aryl rings and the fluoro-aryl rings align with each other to give fluorous and hydrocarbon channels within the crystal. We (Fawcett *et al.*, 1997) and others (Guillevic *et al.*, 1997) have noted a similar tendency for highly fluorinated ligands in metal complexes to align in the solid state; this effect in these classes of metal complexes requires further investigation.

Experimental

The title complex was formed by allowing a solution of mer-[IrF₃(CO){PPh₂(C₆F₅)}₂] in CD₂Cl₂ to stand at room temperature for several weeks. Decanting of the solvent afforded a few yellow crystals.

Crystal data

Mo $K\alpha$ radiation
$\lambda = 0.71073 \text{ Å}$
Cell parameters from 40
reflections
$\theta = 5.09 - 12.26^{\circ}$
$\mu = 3.525 \text{ mm}^{-1}$
T = 293 (2) K
Irregular block
$0.76 \times 0.41 \times 0.26$ mm
Yellow

Data collection

Siemens P4 diffractometer ω scans Absorption correction: ψ scan (*XEMP* in *SHELXTL/PC*; Sheldrick, 1996) $T_{min} = 0.27, T_{max} = 0.46$ 8709 measured reflections 7531 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.084$ S = 0.9767531 reflections 559 parameters H atoms constrained $w = 1/[\sigma^2(F_o^2) + (0.0530P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ 6507 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 26^{\circ}$ $h = -1 \rightarrow 12$ $k = -13 \rightarrow 14$ $l = -19 \rightarrow 19$ 3 standard reflections every 100 reflections intensity decay: <1%

 $(\Delta/\sigma)_{max} = -0.001$ $\Delta\rho_{max} = 1.246 \text{ e } \text{\AA}^{-3}$ $(0.95 \text{ \AA} \text{ from Ir})$ $\Delta\rho_{min} = -0.698 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Scattering factors from *International Tables for Crystallography* (Vol. C)

Table	1. Selected	geometric	parameters	(Å.	0)
I uolo	I. Sciecicu	Scomente	parameters	(11,		,

r1C7	1.863 (5)	C1—C2	1.369 (6)
rl—Cl	2.092 (4)	C1C6	1.399 (7)
r1P2	2.3050(12)	C2—F2	1.356 (6)
r1—P1	2.3044 (12)	C2C3	1.398 (8)
PI-C6I	1.821 (4)	C3—F3	1.350(6)
21C51	1.821 (4)	C3—C4	1.357 (9)
PIC41	1.845 (5)	C4—F4	1.347 (6)
2—C21	1.821 (5)	C4C5	1.370 (9)
2C31	1.833(5)	C5—F5	1.339(7)
2C11	1.843 (5)	C5C6	1.376(7)
C7—O1	1.133(6)	C6F6	1.350 (5)
27—lr1—C1	175.7 (2)	C41-P1-Ir1	114.69 (15)
27—Ir1—P2	87.6(2)	C21—P2Ir1	117.0(2)
21—Ir1—P2	92.43 (12)	C31—P2—Ir1	108.7 (2)
27—Ir1—P1	88.9(2)	C11—P2—Ir1	116.1 (2)
CI—IrI—PI	91.22(12)	O1C7Ir1	176.1 (5)
2—Ir1—P1	175.41 (4)	C2-C1-Ir1	124.0 (4)
C61—P1—Ir1	117.2 (2)	C6C1Ir1	122.5 (3)
51—P1—Ir1	110.6(2)		

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1996). Program(s) used to refine structure: SHELXTL/PC. Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXTL/PC.

The support of the Royal Society (EGH) and the EPSRC (LAP) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1027). Services for accessing these data are described at the back of the journal.

References

- Atherton, M. J., Coleman, K. S., Fawcett, J., Holloway, J. H., Hope, E. G., Karaçar, A., Peck, L. A. & Saunders, G. C. (1995). J. Chem. Soc. Dalton Trans. pp. 4029–4037.
- Atherton, M. J., Fawcett, J., Hill, A. P., Holloway, J. H., Hope, E. G., Russell, D. R., Saunders, G. C. & Stead. R. M. J. (1997). J. Chem. Soc. Dalton Trans. pp. 1137–1147.
- Bennett, R. L., Bruce, M. I. & Gardner, R. C. F. (1973). J. Chem. Soc. Dalton Trans. pp. 2653-2657.
- Bennett, R. L., Bruce, M. I. & Goodfellow, R. J. (1973). J. Fluorine Chem. 2, 447–448.
- Bhattacharyya, P., Fawcett, J., Holloway, J. H., Hope, E. G. & Saunders, G. C. (1997). J. Chem. Soc. Dalton Trans. pp. 199–203.
- Clearfield, A., Gopal, R., Bernal, I., Moser, G. A. & Rausch, M. D. (1975). Inorg. Chem. 14, 2727-2733.
- Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Fawcett, J., Holloway, J. H., Hope, E. G., Russell, D. R., Saunders, G. C. & Atherton, M. J. (1994). J. Organomet. Chem. 464, C20–22.
- Fawcett, J., Hope, E. G., Kemmitt, R. D. W., Paige, D. R., Russell, D. R., Stuart, A. M., Cole-Hamilton, D. J. & Payne, M. J. (1997). J. Chem. Soc. Chem. Commun. pp. 1127–1128.
- Guillevic, M. A., Arif, A. M., Horváth, I. T. & Gladysz, J. A. (1997). Angew. Chem. Int. Ed. Engl. 36, 1612–1615.
- Rausch, M. D. & Moser, G. A. (1974). Inorg. Chem. 13, 11-13.
- Sheldrick, G. M. (1996). SHELXTL/PC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.